Barry, J. J., Freimer, R., & Slavin, H. (2009). Use of Entry-Only Automatic Fare Collection Data to Estimate Linked Transit Trips in New York City. Transportation Research Record: Journal of the Transportation Research Board, 2112(-1), 53–61. doi:10.3141/2112-07

Bills, T. S. (2013). Enhancing Transportation Equity Analysis for Long-Range Planning and Decision Making. University of California, Berkeley.

Bullard, R. D. (2004). Anatomy of transportation racism. In R. D. Bullard, G. S. Johnson, & A. O. Torres (Eds.), Highway robbery : transportation racism & new routes to equity. Cambridge, Mass.: South End Press.

Central Transportation Planning Staff (2014). MBTA Title VI Report May 2014 (No. May). Boston. Retrieved from http://www.mbta.com/uploadedfiles/About_the_T/Fare_Proposals_2012/TITLE VI FINAL_with maps.pdf

Chow, W. (2014). Evaluating online surveys for public transit agencies using a prompted recall approach. Massachusetts Institute of Technology. Retrieved from http://hdl.handle.net/1721.1/89853

Clinton, W. (1994). Federal Actions To Address Environmental Justice in Minority Populations and Low-Income Populations. Federal Register.

Devillaine, F., Munizaga, M., & Trépanier, M. (2012). Detection of Activities of Public Transport Users by Analyzing Smart Card Data. Transportation Research Record: Journal of the Transportation Research Board, 2276(3), 48–55. doi:10.3141/2276-06

Federal Transit Administration. (2007). Circular FTA C 4702.1A: Title VI And Title VI-Dependent Guidelines For Federal Transit Administration Recipients. Washington, DC: U.S. Department of Transportation.

Federal Transit Administration. (2012a). Circular FTA C 4702.1B: Title VI Requirements and Guidelines for Federal Transit Administration Recipients. Washington, DC: U.S. Department of Transportation.

Federal Transit Administration. (2012b). Circular FTA C 4703.1: Environmental Justice Policy Guidance For Federal Transit Administration Recipients. Washington, DC: U.S. Department of Transportation. Retrieved from http://www.fta.dot.gov/documents/FTA_EJ_Circular_7.14-12_FINAL.pdf

Gobillon, L., Selod, H., & Zenou, Y. (2007). The Mechanisms of Spatial Mismatch. Urban Studies, 44(12), 2401–2428. doi:10.1080/00420980701540937

Golub, A., Marcantonio, R. A., & Sanchez, T. W. (2013). Race, Space, and Struggles for Mobility: Transportation Impacts on African Americans in Oakland and the East Bay. Urban Geography, 34(December 2014), 699–728. doi:10.1080/02723638.2013.778598

Google Developers. (2012). General Transit Feed Specification Reference. Retrieved from https://developers.google.com/transit/gtfs/reference

Gordon, J. B. (2012). Intermodal passenger flows on London’s public transport network: automated inference of full passenger journeys using fare-transaction and vehicle-location data. Massachusetts Institute of Technology. Retrieved from http://hdl.handle.net/1721.1/78242

Gordon, J. B. (2014). Internal Communication.

Gordon, J. J., Koutsopoulos, H., Wilson, N., & Attanucci, J. (2013). Automated Inference of Linked Transit Journeys in London Using Fare-Transaction and Vehicle Location Data. Transportation Research Record: Journal of the Transportation Research Board, 2343(-1), 17–24. doi:10.3141/2343-03

Hickey, R. L., Lu, A., & Reddy, A. (2010). Using Quantitative Methods in Equity and Demographic Analysis to Inform Transit Fare Restructuring Decisions. Transportation Research Record: Journal of the Transportation Research Board, 2144(2), 80–92. doi:10.3141/2144-10

Jiang, S., Fiore, G. A., Yang, Y., Ferreira Jr., J., Frazzoli, E., & González, M. C. (2013). A Review of Urban Computing for Mobile Phone Traces: Current Methods, Challenges and Opportunities. Proceedings of the 2Nd ACM SIGKDD International Workshop on Urban Computing, UrbComp ’13 (p. 2:1—–2:9). New York, NY, USA: ACM. doi:10.1145/2505821.2505828

Kain, J. F. (1968). Housing segregation, negro employment, and metropolitan decentralization. The Quarterly Journal of Economics, 175–197.

Kamfonik, D. E. (2013). Quantifying the current and future impacts of the MBTA Corporate Pass Program. Massachusetts Institute of Technology. Retrieved from http://hdl.handle.net/1721.1/82837

Karner, A., & Golub, A. (2015). Comparing two common approaches to public transit service equity evaluation. Transportation Research Board 94th Annual Meeting (pp. 1–17). Washington, DC.

Karner, A., & Niemeier, D. (2013). Civil rights guidance and equity analysis methods for regional transportation plans: A critical review of literature and practice. Journal of Transport Geography, 33, 126–134. doi:10.1016/j.jtrangeo.2013.09.017

La Londe, K. W. (2004). Who Wants to Be an Environmental Justice Advocate: Options for Bringing an Environmental Justice Complaint in the Wake of Alexander v. Sandoval. BC Envtl. Aff. L. Rev., 31, 27.

Laufer, J. A. (2002). Alexander v. Sandoval and its implications for disparate impact regimes. Columbia Law Review, 102(6), 1613–1658.

Lee, S., & Hickman, M. (2014). Trip purpose inference using automated fare collection data. Public Transport, 6(1-2), 1–20. doi:10.1007/s12469-013-0077-5

Montero, L., Codina, E., & Barceló, J. (2015). Dynamic OD transit matrix estimation: formulation and model-building environment. In H. Selvaraj, D. Zydek, & G. Chmaj (Eds.), Progress in Systems Engineering SE - 51, Advances in Intelligent Systems and Computing (Vol. 1089, pp. 347–353). Springer International Publishing. doi:10.1007/978-3-319-08422-0_51

Munizaga, M. a., & Palma, C. (2012). Estimation of a disaggregate multimodal public transport Origin–Destination matrix from passive smartcard data from Santiago, Chile. Transportation Research Part C: Emerging Technologies, 24, 9–18. doi:10.1016/j.trc.2012.01.007

Nassir, N., Khani, A., Lee, S., Noh, H., & Hickman, M. (2011). Transit Stop-Level Origin-Destination Estimation Through Use of Transit Schedule and Automated Data Collection System. Transportation Research Record: Journal of the Transportation Research Board, 2263, 140–150. doi:10.3141/2263-16

Okabe, a., Satoh, T., Furuta, T., Suzuki, a., & Okano, K. (2008). Generalized network Voronoi diagrams: Concepts, computational methods, and applications. International Journal of Geographical Information Science, 22(9), 965–994. doi:10.1080/13658810701587891

Pelletier, M.-P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), 557–568. doi:10.1016/j.trc.2010.12.003

Pincus, K. S. (2014). Analysis of the 2012 Massachusetts Bay Transportation Authority fare increase using automated fare collection data. Massachusetts Institute of Technology.

Program, T. P. C. B. (TPCB) P. (2011). Effective Practices in Title VI Transit Equity Analysis for Major Transit Service and Fare Changes (pp. 1–22). Memphis: American Public Transit Association. Retrieved from http://www.planning.dot.gov/peer/tennessee/APTA_equity_roundtable_05-11.pdf

Pucher, J. (1982). Discrimination in Mass Transit. Journal of the American Planning Association, 48(January 2015), 315–326. doi:10.1080/01944368208976181

Reddy, A., Chennadu, T., & Lu, A. (2010). Safeguarding Minority Civil Rights and Environmental Justice in Service Delivery and Reductions. Transportation Research Record: Journal of the Transportation Research Board, 2163, 45–56. doi:10.3141/2163-05

Robinson, S., Narayanan, B., Toh, N., & Pereira, F. (2014). Methods for pre-processing smartcard data to improve data quality. Transportation Research Part C: Emerging Technologies, 49(0), 43–58. doi:http://dx.doi.org/10.1016/j.trc.2014.10.006

Sanchez, T., Stolz, R., & Ma, J. (2004). Inequitable Effects of Transportation Policies on Minorities. Transportation Research Record, 1885, 104–110. doi:10.3141/1885-15

Smith, C., Mashhadi, A., & Capra, L. (2013). Ubiquitous sensing for mapping poverty in developing countries. Orange D4D Challenge. Retrieved from http://haig.cs.ucl.ac.uk/staff/L.Capra/publications/d4d.pdf

Taylor, B., & Ong, P. (1995). Spatial Mismatch or Automobile Mismatch? An Examination of Race, Residence and Commuting in US Metropolitan Areas. Urban Studies, 32, 1453–1473. doi:10.1080/00420989550012348

TPCB. (2011). Effective Practices in Title VI Transit Equity Analysis for Major Transit Service and Fare Changes (pp. 1–22). Memphis: American Public Transit Association. Retrieved from http://www.planning.dot.gov/peer/tennessee/APTA_equity_roundtable_05-11.pdf

Tribone, D. A. (2013). Making data matter: the role of information design and process in applying automated data to improve transit service. Massachusetts Institute of Technology. Retrieved from http://hdl.handle.net/1721.1/81640

Vanderwaart, C. (2015). Internal Communication.

Wang, T., Lu, A., & Reddy, A. (2013). Maintaining key services while retaining core values: NYC transit’s environmental justice strategies. JOURNAL OF PUBLIC TRANSPORTATION, 16(1), 123–152. Retrieved from http://libproxy.mit.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edswss&AN=000316031500007&site=eds-live

Williams, E., Pollack, S., & Billingham, C. (2014). Measuring Transportation Equity: Commute Time Penalties by Race and Mode in Greater Boston. Transportation Research Board 93rd Annual Meeting (Vol. 1500). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Measuring+Transportation+Equity+:+Commute+Times+Penalties+by+Race+and+Mode+in+Greater+Boston#0 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Measuring+Transportation+Equity:+Com

Yang, Y., Gerstle, D., Widhalm, P., Bauer, D., & Gonzalez, M. C. (2013). The potential of low-frequency AVL data for the monitoring and control of bus performance. Proceedings of the Annual Meeting of the Transportation Research Board.

Zhao, J., Rahbee, A., & Wilson, N. H. M. (2007). Estimating a Rail Passenger Trip Origin‐Destination Matrix Using Automatic Data Collection Systems. Computer‐Aided Civil and Infrastructure Engineering, 22(5), 376–387.

Footnotes

[1] An open transit network is one in which fare payment only occurs at the origin of a trip, at boarding or gate entry, rather than a closed system which requires fare payment at entry and exit.

[2] General Transit Feed Specification: a standard for publishing machine-readable transit schedules

[3] See https://developers.google.com/transit/gtfs/reference for more information about the specification. Last accessed (2014-11-28)

[4] The most recent can be downloaded in a ‘.zip’ file at http://www.mbta.com/uploadedfiles/MBTA_GTFS.zip

[5] See http://www.mbta.com/rider_tools/realtime_bus/ for bus arrival predictions. There is also a feed published in the GTFS-realtime format at http://realtime.mbta.com/portal

[6] The Silver Line 4 & 5 and the Mattapan High-Speed Rail Line cannot be accessed behind the faregate

[7] <http://www.mbta.com/uploadedfiles/About_the_T/Fare_Proposals_2012/TITLE%20VI%20FINAL_with%20maps.pdf> Last accessed March 11, 2015. Previous analyses are available at http://ctps.org/Drupal/recent_studies

[8] Accessed from http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/trains.html